A corrected version of the Duchet kernel conjecture

نویسندگان

  • Endre Boros
  • Vladimir Gurvich
چکیده

In 1980 Piere Duchet conjectured that odd directed cycles are the only edge minimal kernel-less connected digraphs i.e. in which after the removal of any edge a kernel appears. Although this conjecture was disproved recently by Apartsin, Ferapontova and Gurvich (1996), the following modiication of Duchet's conjecture still holds: odd holes (i.e. odd non-directed chordless cycles of length 5 or more) are the only connected graphs which are not kernel-solvable but after the removal of any edge the resulting graph is kernel-solvable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A basic elementary extension of the Duchet-Meyniel theorem

The Conjecture of Hadwiger implies that the Hadwiger number h times the independence number α of a graph is at least the number of vertices n of the graph. In 1982 Duchet and Meyniel proved a weak version of the inequality, replacing the independence number α by 2α− 1, that is, (2α− 1) · h ≥ n. In 2005 Kawarabayashi, Plummer and the second author published an improvement of the theorem, replaci...

متن کامل

Kernels and perfectness in arc-local tournament digraphs

In this paper we give a characterization of kernel-perfect (and of critical kernel-imperfect) arc-local tournament digraphs. As a consequence, we prove that arc-local tournament digraphs satisfy a strenghtened form of the following interesting conjecture which constitutes a bridge between kernels and perfectness in digraphs, stated by C. Berge and P. Duchet in 1982: a graph G is perfect if and ...

متن کامل

Perfect graphs, kernels, and cores of cooperative games

A kernel of a directed graph D is defined as an independent set which is reachable from each outside vertex by an arc. A graph G is called kernel-solvable if an orientation D of G has a kernel whenever each clique of G has a kernel in D. The notion of kernel-solvability has important applications in combinatorics, list coloring, and game theory. It turns out that kernel-solvability is equivalen...

متن کامل

Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture

Probably the best-known among the remaining unsolved problems in graph theory is Hadwiger’s Conjecture: If χ(G) denotes the chromatic number of graph G, then G has the complete graph Kχ(G) as a minor. The following would immediately follow from the truth of Hadwiger’s Conjecture: Conjecture: If G has n vertices and if α(G) denotes the independence number of G, then G has Kdn/α(G)e as a minor. I...

متن کامل

Parity graphs are kernel-M-solvable

While the famous Berge’s Strong Perfect Graph Conjecture (see [l] for details on perfect graphs) remains a major unsolved problem in Graph Theory, an alternative characterization of Perfect Graphs was conjectured in 1982 by Berge and the author [3]. This second conjecture asserts the existence of kernels for a certain type of orientations of perfect graphs. Here we prove a weaker form of the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 179  شماره 

صفحات  -

تاریخ انتشار 1998